Выполняя выделительную функцию почки тем самым способствуют

Роль почек в жизнеобеспечении организма человека и их функции


  • Структура и физиология почек в организме человека
    • Нефрон: единица, благодаря которой органы работают правильно
  • Функции почек в организме и механизм их работы
    • Основные функции органов

Почки имеют большое значение в организме человека.

Оглавление:

Они выполняют ряд жизненно важных функций. У людей в норме два органа. Следовательно, выделяют виды почек – правую и левую. Человек может жить и с одной из них, однако жизнедеятельность организма будет под постоянной угрозой, ведь его сопротивляемость инфекциям снизится в десятки раз.

Структура и физиология почек в организме человека

Почка – это парный орган. Это значит, что в норме у человека их две. Каждый орган имеет форму боба и относится к мочевыделительной системе. Вместе с тем основные функции почек не ограничиваются только выделительной функцией.

Органы располагаются в области поясницы справа и слева между грудным и поясничным отделами позвоночника. При этом расположение правой почки незначительно ниже, чем левой. Это объясняется тем, что над ней находится печень, которая не дает почке сместиться вверх.

Почки приблизительно одинаковы по размеру: они имеют длину от 11,5 до 12,5 см, толщину от 3 до 4 см, ширину от 5 до 6 см каждая и вес от 120 до 200 г. Правая, как правило, имеет немного меньшие размеры.



Какова же физиология почек? Орган снаружи покрывает капсула, которая надежно защищает его. Кроме того, каждая почка состоит из системы, функции которой сводятся к накоплению и выводу мочи, а также из паренхимы. Паренхиму составляют корковое вещество (его внешний слой) и мозговое вещество (его внутренний слой). Систему накопления мочи составляют малые почечные чашечки. Малые чашечки сливаются и образуют большие почечные чашечки. Последние тоже соединяются и образуют в совокупности почечную лоханку. А лоханка соединяется с мочеточником. У людей, соответственно, имеется два мочеточника, которые входят в мочевой пузырь.

Нефрон: единица, благодаря которой органы работают правильно

Кроме того, органы снабжены структурно функциональной единицей, которая называется нефрон. Нефрон считается важнейшей единицей почки. Каждый из органов содержит не один нефрон, а насчитывает их примерно 1 млн. Каждый нефрон отвечает за работу почек в человеческом организме. Именно нефрон отвечает за процесс мочеобразования. Больше всего нефронов находится в корковом веществе почки.

Каждая структурно функциональная единица нефрон представляет собой целую систему. Эту систему составляют капсула Шумлянского-Боумена, клубочек и переходящие друг в друга канальцы. Каждый клубочек – это система капилляров, которая осуществляет кровоснабжение почки. Петли этих капилляров находятся в полости капсулы, которая расположена между двумя ее стенками. Полость капсулы переходит в полость канальцев. Эти канальцы образуют петлю, проникающую из коркового вещества в мозговое. В последнем находятся нефроновые и выводящие канальцы. По вторым канальцам моча выводится в чашечки.

Мозговое вещество формирует пирамидки, имеющие вершины. Каждая вершина пирамиды заканчивается сосочками, а те входят в полость малой чашечки. В зоне сосочков все выводящие канальцы объединяются.

Структурно функциональная единица почки нефрон обеспечивает правильную работу органов. Если бы нефрон отсутствовал, органы не смогли бы выполнять возложенные на них функции.

Физиология почек включает не только нефрон, но и другие системы, которые обеспечивают работу органов. Так, от аорты отходят почечные артерии. Благодаря им происходит кровоснабжение почки. Нервная регуляция функции органов осуществляется при помощи нервов, которые проникают из чревного сплетения непосредственно в почки. Чувствительность капсулы почек тоже возможна благодаря нервам.



Функции почек в организме и механизм их работы

Чтобы стало понятно, как работают почки, в первую очередь нужно понимать, какие функции на них возложены. К ним относятся следующие:

  • выделительная, или экскреторная;
  • осморегулирующая;
  • ионорегулирующая;
  • внутрисекреторная, или эндокринная;
  • метаболическая;
  • кроветворящая (принимает непосредственное участие в этом процессе);
  • концентрационная функция почек.

В течение суток они прокачивают весь объем крови. Количество повторений данного процесса огромно. За 1 минуту прокачивается около 1 л крови. При этом органы выбирают из прокачиваемой крови все продукты распада, шлаки, токсины, микробы и другие вредоносные для организма человека вещества. Затем все эти вещества попадают в плазму крови. Далее все это направляется в мочеточники, а оттуда – в мочевой пузырь. После этого вредоносные вещества покидают человеческий организм при опорожнении мочевого пузыря.

Когда токсины попадают в мочеточники, обратного хода в организм им уже нет. Благодаря специальному клапану, который находится в органах, абсолютно исключается повторное попадание токсинов в организм. Это становится возможным благодаря тому, что клапан открывается в одном лишь направлении.

Таким образом, прокачивая свыше 200 л крови в сутки, органы стоят на страже ее чистоты. Из зашлакованной токсинами и микробами кровь становится чистой. Это крайне важно, поскольку кровь омывает каждую клетку человеческого организма, поэтому жизненно необходимо, чтобы она была очищена.

Основные функции органов

Итак, основная функция, которую выполняют органы, выделительная. Ее также называют экскреторной. Экскреторная функция почек отвечает за фильтрацию и секрецию. Происходят эти процессы при участии клубочка и канальцев. В частности, в клубочке осуществляется процесс фильтрации, а в канальцах – процессы секреции и реабсорбции веществ, которые нужно вывести из организма. Выделительная функция почек является очень важной, поскольку отвечает за образование мочи и обеспечивает ее нормальный вывод (выделение) из организма.



Эндокринная функция состоит в синтезе определенных гормонов. В первую очередь это касается ренина, благодаря которому в организме человека задерживается вода и регулируется объем циркулирующей крови. Важен и гормон эритропоэтин, который стимулирует создание в костном мозге эритроцитов. И, наконец, органы синтезируют простагландины. Это вещества, регулирующие артериальное давление.

Метаболическая функция заключается в том, что именно в почках жизненно необходимые для работы организма микроэлементы и вещества синтезируются и превращаются в еще более важные. Например, витамин D превращается в D3. Оба витамина крайне важны для человека, но витамин D3 является более активной формой витамина D. Кроме того, благодаря этой функции в организме поддерживается оптимальный баланс белков, углеводов и липидов.

Ионорегулирующая функция подразумевает регуляцию кислотно-щелочного баланса, за который тоже отвечают эти органы. Благодаря им кислотный и щелочной компоненты плазмы крови поддерживаются в стабильном и оптимальном соотношении. Оба органа выделяют при необходимости избыток бикарбоната либо водорода, благодаря чему и поддерживается этот баланс.

Осморегулирующая функция заключается в сохранении концентрации осмотически активных кровяных веществ при различном водном режиме, которому может подвергаться организм.

Кроветворящая функция означает участие обоих органов в процессе кроветворения и очищения крови от токсинов, микробов, вредных бактерий и шлаков.



Концентрационная функция почек подразумевает то, что они концентрируют и разводят мочу посредством выделения воды и растворенных веществ (в первую очередь речь идет о мочевине). Органы должны делать это практически независимо друг от друга. Когда моча разводится, выделяется больший объем воды, а не растворенных веществ. Напротив, посредством концентрации выделяется больший объем растворенных веществ, а не воды. Концентрационная функция почек крайне важна для жизнедеятельности всего организма человека.

Таким образом, становится ясно, что значение почек и их роль для организма настолько велики, что их трудно переоценить.

Вот почему так важно при малейших расстройствах работы этих органов обратить на это должное внимание и обратиться к врачу. Поскольку от работы этих органов зависят многие процессы в организме, восстановление функций почек становится крайне важным мероприятием.

Виктор Васильевич Златогорский

© Copyright 2014–2018, popochkam.ru



Копирование материалов сайта возможно без предварительного согласования

в случае установки активной индексируемой ссылки на наш сайт.

Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению. Обязательно проконсультируйтесь с вашим лечащим врачом!

Источник: http://popochkam.ru/raznoe/funkcii-pochek-v-organizme.html

Выделение.

177. Перечислите органы, которые выполняют выделительные функции. Какие продукты обмена веществ они выделяют?

Почки, мочеточники, мочевой пузырь и мочеиспускательный канал.

Выделяют воду, мочевину, мочевую кислоту, соли.

178. Рассмотрите рисунки. Напишите названия частей мочевыделительной системы, обозначенных цифрами.

179. Нарисуйте строение нефрона, подпишите его основные части.

180. Объясните, где и как образуется первичная моча.



Процесс образования первичной мочи проходит в почечном клубочке. Вся жидкая часть крови, поступающая в почечные клубочки, фильтруется и попадает в капсулы. Образовавшаяся первичная моча содержит аминокислоты, глюкозу и другие соединения за исключением белков.

181. Чем вторичная моча отличается от первичной? Где и как она образуется?

На втором этапе, первичная моча проходит по сложной системе канальцев, где последовательно всасываются нужные для организма вещества и вода. Всё вредное для жизнедеятельности организма остаётся в канальцах и в виде мочи выводится из почек в мочевой пузырь. Эта конечная моча и называется вторичной. В составе вторичной мочи нет аминокислот и глюкозы, но повышено содержание мочевины и мочевой кислоты.

Источник: http://biogdz.ru/8-klass/vydelenie.html

Физиология выделения

Лекция 16

Конечные продукты обмена веществ, выделяемые организмом, называются экскретами, а органы, выполняющие выделительные функции, экскреторными или выделительными. К выделительным органам относят легкие, желудочно-кишечный тракт, кожу, почки.



Легкие — способствуют выделению в окружающую среду углекислого газа и воды в виде паров (около 400 мл в сутки).

Желудочно-кишечный тракт выделяет незначительное количество воды, желчных кислот, пигментов, холестерина, некоторые лекарственные вещества (при поступлении их в организм), соли тяжелых металлов (железо, кадмий, марганец) и непереваренные остатки пищи в виде каловых масс.

Кожа выполняет экскреторную функцию за счет наличия потовых и сальных желез. Потовые железы выделяют пот, в состав которого входят вода, соли, мочевина, мочевая кислота, креатинин и некоторые другие соединения.

Основным же органом выделения являются почки, которые выводят с мочой большую часть конечных продуктов обмена, главным образом содержащих азот (мочевину, аммиак, креатинин и др.). Процесс образования и выделения мочи из организма называется диурезом.

ФИЗИОЛОГИЯ ПОЧЕК.

Главная функция почек — выделительная. Они удаляют из организма продукты распада, излишки воды, солей, вредные вещества и некоторые лекарственные препараты.



— Почки поддерживают на относительно постоянном уровне осмотическое давление внутренней среды организма за счет удаления излишка воды и солей (главным образом, хлорида натрия).

— Почки наряду с другими механизмами обеспечивают постоянство реакции крови (рН крови) за счет изменения интенсивности выделения кислых или щелочных солей фосфорной кислоты при сдвигах реакции крови в кислую или щелочную сторону.

— Почки осуществляют секреторную функцию. Они обладают способностью к секреции органических кислот и оснований, ионов К и водорода.

— Установлено участие почек не только в минеральном, но и в липидном, белковом и углеводном обмене.

Таким образом, почки, регулируя величину осмотического давления в организме, постоянство реакции крови, осуществляя синтетическую, секреторную и экскреторную функции, принимают активное участие в поддержании постоянства состава внутренней среды организма (гомеостаза).



Строение почек.

Почки располагаются по обеим сторонам поясничного отдела позвоночника. Почки покрыты соединительнотканной капсулой. Размеры почки взрослого человека около 11X5 см, масса в среднем равна 200—250 г. На продольном разрезе почки различают 2 слоя: корковый и мозговой.

Структурно- функциональной единицей почки является нефрон. Их количество достигает в среднем 1 млн. Нефрон представляет собой длинный каналец, начальный отдел которого в виде двухстенной чаши окружает артериальный капиллярный клубочек, а конечный – впадает в собирательную трубку.

В нефроне выделяют следующие отделы:

1) почечное (мальпигиево) тельце состоит из сосудистого клубочка и окружающей его капсулы почечного клубочка (Шумлянского – Боумена).

2) проксимальный сегмент включает извитую ( извитой каналец первого порядка) и прямую части (толстый нисходящий отдел петли нефрона (Генле); 3) тонкий сегмент петли нефрона; 4) дистальный сегмент, состоящий из прямой (толстый восходящий отдел петли нефрона) и извитой части (извитой каналец второго порядка). Дистальные извитые канальцы открываются в собирательные трубки.



В корковом слое находятся сосудистые клубочки, элементы проксимального и дистального сегментов мочевых канальцев. В мозговом веществе располагаются элементы тонкого сегмента канальцев, толстые восходящие колена петель нефрона и собирательные трубки.

Собирательные трубки, сливаясь, образуют общие выводные протоки, которые проходят через мозговой слой почки к верхушкам сосочков, выступающим в полость почечной лоханки. Почечные лоханки открываются в мочеточники, которые в свою очередь впадают в мочевой пузырь.

Кровоснабжение почек.

Почки получают кровь из почечной артерии — одной из крупных ветвей аорты. Артерия в почке делится на большое количество мелких сосудов — артериол, приносящих кровь к клубочку (приносящая артериола), которые затем распадаются на капилляры (первая сеть капилляров). Капилляры сосудистого клубочка, сливаясь, образуют выносящую артериолу, диаметр которой в 2 раза меньше диаметра приносящей. Выносящая артериола вновь распадается на сеть капилляров, оплетающих канальцы (вторая сеть капилляров).

Таким образом, для почек характерно наличие двух сетей капилляров: 1) капилляры сосудистого клубочка; 2) капилляры, оплетающие почечные канальцы.

Артериальные капилляры переходят в венозные. В дальнейшем они, сливаясь в вены, отдают кровь в нижнюю полую вену.

Через почки вся кровь (5—6 л) проходит за 5 мин. В течение суток через почки протекает около 1000—1500 л крови. Такой обильный кровоток позволяет полностью удалить все образующиеся ненужные и даже вредные для организма вещества. Лимфатические сосуды почек сопровождают кровеносные сосуды, образуя у ворот почки сплетение, окружающее почечную артерию и вену.



Иннервация почек. Почки хорошо иннервируются. Иннервация почек (эфферентные. волокна) осуществляется преимущественно за счет симпатических нервов (чревные нервы). В почках обнаружен рецепторный аппарат, от которого отходят афферентные (чувствительные) волокна, идущие главным образом в составе симпатических нервов. Большое количество рецепторов и нервных волокон обнаружено в капсуле, окружающей почки.

Юкстагломерулярный комплекс. Юкстагломерулярный, или околоклубочковый, комплекс состоит в основном из миоэпителиальных клеток, располагающихся главным образом вокруг приносящей артериолы клубочка и секре тирующих биологически активное вещество — ренин.

Юкстагломерулярный комплекс участвует в регуляции водно-солевого обмена и поддержании постоянства артериального давления.

При уменьшении количества притекающей к почкам крови и снижении в ней содержания солей натрия выделение ренина и его активность возрастают.

При некоторых заболеваниях почек увеличивается секреция ренина, что может привести к стойкому повышению величины артериального давления и нарушению водно-солевого обмена в организме.



МЕХАНИЗМЫ МОЧЕОБРАЗОВАНИЯ.

Моча образуется из плазмы крови, протекающей через почки. Мочеобразование — сложный процесс, состоящий из двух этапов: фильтрации (ультрафильтрация) и реабсорбции (обратное всасывание) .

Клубочковая ультрафильтрация. В капиллярах клубочков почечного тельца происходит фильтрация из плазмы крови воды с растворенными в ней неорганическими и органическими веществами, имеющими низкую молекулярную массу. Эта жидкость поступает в капсулу почечного клубочка, а оттуда — в канальцы почек. По химическому составу она сходна с плазмой крови, но почти не содержит белков. Это первичная моча.

Процессу фильтрации способствует высокое давление крови (гидростатическое) в капиллярах клубочков: 9,33— 12,0 кПа (70—90 мм рт.ст. Однако плазма в капиллярах клубочков фильтруется не под всем этим давлением. Белки крови удерживают воду и тем самым препятствуют фильтрации мочи. Давление, создаваемое белками плазмы (онкотическое давление), равно 3,33—4,00 кПа (25—30 мм рт. ст.). Кроме того, сила фильтрации уменьшается также и на величину давления жидкости, находящейся в полости капсулы почечного клубочка, составляющего 1,33—2,00 кПа (10— 15 мм рт. ст.).

Таким образом, давление, под влиянием которого осуществляется фильтрация первичной мочи, равно разности между давлением крови в капиллярах клубочков, с одной стороны, и суммы давления белков плазмы крови и давления жидкости, находящейся в полости капсулы,— с другой. Следовательно, величина фильтрационного давления равна 9,33—(3,33 + 2,00) = 4,0 кПа (30 мм рт. ст.). Фильтрация мочи прекращается, если артериальное давление крови ниже 4,0 кПа (критическая величина).

Изменение просвета приносящего и выносящего сосудов обусловливает или увеличение фильтрации (сужение выносящего сосуда), или ее снижение (сужение приносящего сосуда). На величину фильтрации влияет также изменение проницаемости мембраны, через которую происходит фильтрация.

Канальцевая реабсорбция. В почечных канальцах происходит обратное всасывание (реабсорбция) из первичной мочи в кровь воды, глюкозы, части солей и небольшого количества мочевины. Образуется конечная, или вторичная моча, которая по своему составу резко отличается от первичной. В ней нет глюкозы, аминокислот, некоторых солей и резко повышена концентрация мочевины.



За сутки в почках образуется 150—180 л первичной мочи. Благодаря обратному всасыванию в канальцах воды и многих растворенных в ней веществ за сутки почками выделяется всего 1 —1,5 л конечной мочи.

Обратное всасывание может происходить активно или пассивно. Активно реабсорбируются глюкоза, аминокислоты, фосфаты, соли натрия. Эти вещества полностью всасываются в канальцах и в конечной моче отсутствуют. За счет активной реабсорбции возможно обратное всасывание веществ из мочи в кровь даже в том случае, когда их концентрация в крови равна концентрации в жидкости канальцев или выше.

Пассивная реабсорбция происходит без затраты энергии за счет диффузии и осмоса. Большая роль в этом процессе принадлежит разнице онкотического и гидростатического давления в капиллярах канальцев. За счет пассивной реабсорбции осуществляется обратное всасывание воды, хлоридов, мочевины. Удаляемые вещества проходят через стенку канальцев только тогда, когда концентрация их в просвете достигает определенной пороговой величины. Пассивной реабсорбции подвергаются вещества, которые выводятся из организма. Они всегда встречаются в моче. Среди них наибольшее значение имеет конечный продукт азотистого обмена — мочевина.

В проксимальном отделе канальца всасываются глюкоза, ионы натрия и калия, в дистальном продолжается всасывание натрия, калия и других веществ. На протяжении всего канальца всасывается вода, причем в дистальной его части в 2 раза больше, чем в проксимальной. Особое место в механизме реабсорбции воды и ионов натрия занимает петля нефрона за счет так называемой поворотно-противоточной системы. Рассмотрим ее сущность. Петля нефрона имеет 2 колена: нисходящее и восходящее. Эпителий нисходящего отдела пропускает воду, а эпителий восходящего колена непроницаем для воды, но способен активно всасывать ионы натрия и переводить их в тканевую жидкость, а через нее обратно в кровь (рис. 40).

Проходя через нисходящий отдел петли нефрона, моча отдает воду, сгущается, становится более концентрированной. Отдача воды происходит пассивно за счет того, что одновременно в восходящем отделе осуществляется активная реабсорбция ионов натрия. Поступая в тканевую жидкость, ионы натрия повышают в ней осмотическое давление и тем самым способствуют притягиванию в тканевую жидкость воды из нисходящего колена. В свою очередь повышение концентрации мочи в петле нефрона за счет обратного всасывания воды облегчает переход ионов натрия из мочи в тканевую жидкость. Таким образом, в петле нефрона происходит обратное всасывание больших количеств воды и ионов натрия.



В дистальных извитых канальцах осуществляется дальнейшее всасывание ионов натрия, калия, воды и других веществ. В отличие от проксимальных извитых канальцев и петли нефрона, где реабсорбция ионов натрия и калия не зависит от их концентрации (обязательная реабсорбция), величина обратного всасывания указанных ионов в дистальных канальцах изменчива и зависит от их уровня в крови (факультативная реабсорбция). Следовательно, дистальные отделы извитых канальцев регулируют и поддерживают постоянство концентрации ионов натрия и калия в организме.

Канальцевая секреция. Кроме реабсорбции в канальцах осуществляется процесс секреции. При участии специальных ферментных систем происходит активный транспорт некоторых веществ из крови в просвет канальцев. Из продуктов белкового обмена активной секреции подвергаются креатинин, парааминогиппуровая кислота. Этот процесс наиболее выражен при введении в организм чужеродных ему веществ.

Таким образом, в почечных канальцах, особенно в их проксимальных сегментах, функционируют системы активного транспорта. В зависимости от состояния организма эти системы могут менять направление активного переноса веществ, т. е. обеспечивают или их секрецию (выделение), или обратное всасывание.

Кроме осуществления фильтрации, реабсорбции и секреции клетки почечных канальцев способны синтезировать некоторые вещества из различных органических и неорганических продуктов. Так, в клетках почечных канальцев синтезируется гиппуровая кислота, аммиак.

Функция собирательных трубок. В собирательных трубках происходит дальнейшее всасывание воды.



Таким образом, мочеобразование — сложный процесс, в котором наряду с явлениями фильтрации и реабсорбции большую роль играют процессы активной секреции и синтеза. Если процесс фильтрации протекает в основном за счет артериального давления, то есть в конечном итоге за счет функционирования сердечно-сосудистой системы, то процессы реабсорбции, секреции и синтеза являются результатом активной деятельности клеток канальцев и требуют затраты энергии. С этим связана большая потребность почек в кислороде. Они используют кислорода в 6—7 раз больше, чем мышцы (на единицу массы).

Регуляция деятельности почек.

Нервная регуляция. Симпатические нервы, иннервирующие почки, в основном являются сосудосуживающими. При их раздражении уменьшается выделение воды и увеличивается выведение натрия с мочой. Это обусловлено тем, что количество притекающей к почкам крови уменьшается, давление в клубочках падает, а следовательно, снижается и фильтрация первичной мочи. Перерезка симпатического нерва, иннервирующего почки, приводит к увеличению отделения мочи. Однако при возбуждении симпатической нервной системы фильтрация мочи может и усилиться, если суживаются выносящие артериолы клубочков.

При болевых раздражениях рефлекторно уменьшается диурез вплоть до полного его прекращения (болевая анурия). Сужение почечных сосудов в этом случае происходит в результате возбуждения симпатической нервной системы и увеличения секреции гормона вазопрессина, обладающего сосудосуживающим действием. Раздражение парасимпатических нервов увеличивает выведение с мочой хлоридов за счет уменьшения их обратного всасывания в канальцах почек.

Кора головного мозга вызывает изменения в работе почек или непосредственно через вегетативные нервы, или через нейроны гипоталамуса. В ядрах гипоталамуса образуется антидиуретический гормон (вазопрессин).

Гуморальная регуляция. Вазопрессин увеличивает проницаемость стенки дис-тальных извитых канальцев и собирательных трубок для воды и тем самым способствует ее обратному всасыванию, что приводит к уменьшению мочеотделения и повышению осмотической концентрации мочи. При избытке вазопрессина может наступить полное прекращение мочеобразования. Недостаток гормона в крови вызывает развитие тяжелого заболевания — несахарного диабета, или несахарного мочеизнурения. При этом заболевании выделяется большое количество светлой мочи с незначительной относительной плотностью, в которой отсутствует сахар.



Альдостерон (гормон коркового вещества надпочечников) способствует реабсорбции ионов натрия и выведению ионов калия в дистальных отделах канальцев. Гормон тормозит обратное всасывание кальция и магния в проксимальных отделах канальцев.

КОЛИЧЕСТВО, СОСТАВ И СВОЙСТВА МОЧИ.

За сутки человек выделяет в среднем около 1,5 л мочи. Диурез возрастает после обильного питья, потребления белка, продукты распада которого стимулируют мочеобразование. Мочеобразование снижается при потреблении небольшого количества воды, при усиленном потоотделении.

Интенсивность мочеобразования колеблется в течение суток. Днем мочи образуется больше, чем ночью. Уменьшение мочеобразования ночью связано с понижением деятельности организма во время сна, с некоторым падением величины артериального давления. Ночная моча темнее и более концентрированная.

Физическая нагрузка оказывает выраженное влияние на образование мочи. При длительной работе уменьшается диурез. Это объясняется тем, что при повышенной физической активности кровь в большом количестве притекает к работающим мышцам, вследствие чего уменьшается кровоснабжение почек и снижается фильтрация мочи. Одновременно физическая нагрузка сопровождается усиленным потоотделением, что также способствует уменьшению диуреза.

Цвет. Моча — прозрачная жидкость светло-желтого цвета. При отстаивании в моче выпадает осадок, который состоит из солей и слизи.



Реакция. Реакция мочи здорового человека преимущественно слабокислая. рН ее колеблется от 5,0 до 7,0. Реакция мочи может изменяться в зависимости от состава пищевых продуктов. При употреблении смешанной пищи (животного и растительного происхождения) моча человека имеет слабокислую реакцию. При питании преимущественно мясной пищей и другими продуктами, богатыми белками, реакция мочи становится кислой; растительная пища способствует переходу реакции мочи в нейтральную или даже щелочную.

Относительная плотность. Плотность мочи равна в среднем 1,015—1,020. Она зависит от количества принятой жидкости.

Состав. Почки являются основным органом выведения из организма азотистых продуктов распада белка: мочевины, мочевой кислоты, аммиака, пуриновых оснований, креатинина, индикана.

В нормальной моче белок отсутствует или определяются только его следы (не более 0,03%). Появление белка в моче (протеинурия) свидетельствует обычно о заболеваниях почек. Однако в некоторых случаях, например, во время напряженной мышечной работы (бег на большие дистанции), белок может появиться в моче здорового человека вследствие временного увеличения проницаемости мембраны сосудистого клубочка почек.

Среди органических соединений небелкового происхождения в моче встречаются: соли щавелевой кислоты, поступающие в организм с пищей, особенно растительной; молочная кислота, выделяющаяся после мышечной деятельности; кетоновые тела, образующиеся при превращении в организме жиров в сахар.

Глюкоза появляется в моче лишь в тех случаях, когда ее содержание в крови резко увеличено (гипергликемия). Выведение сахара с мочой называется глюкозурией.



Появление эритроцитов в моче (гематурия) наблюдается при заболеваниях почек и мочевыводящих органов.

В моче здорового человека и животных содержатся пигменты (уробилин, урохром), которые определяют ее желтый цвет. Эти пигменты образуются из билирубина желчи в кишечнике, почках и выделяются ими.

С мочой выводится большое количество неорганических солей — около 15—25 г в сутки. Из организма экскретируются хлорид натрия, хлорид калия, сульфаты и фосфаты. От них также зависит кислая реакция мочи.

Выведение мочи. Конечная моча поступает из канальцев в лоханку и из нее в мочеточник. Передвижение мочи по мочеточникам в мочевой пузырь осуществляется под влиянием силы тяжести, а также за счет перистальтических движений мочеточников. Мочеточники, косо входя в мочевой пузырь, образуют у его основания своеобразный клапан, препятствующий обратному поступлению мочи из мочевого пузыря. В мочевом пузыре имеются так называемые сфинктеры или жомы (кольцеобразные мышечные пучки). Они плотно закрывают выход из мочевого пузыря. Первый из сфинктеров — сфинктер мочевого пузыря — находится у его выхода. Второй сфинктер — сфинктер мочеиспускательного канала — расположен несколько ниже первого и закрывает мочеиспускательный канал.

Мочевой пузырь иннервируется парасимпатическими (тазовыми) и симпатическими нервными волокнами (подчревными). Возбуждение симпатических нервов способствует накоплению мочи в пузыре. При возбуждении парасимпатических волокон стенка мочевого пузыря сокращается, сфинктеры расслабляются и моча изгоняется из пузыря.

Моча непрерывно поступает в мочевой пузырь, что ведет к повышению давления в нем. Увеличение давления в мочевом пузыре до 12—15 см водного столба вызывает потребность в мочеиспускании. После мочеиспускания давление в пузыре снижается почти до 0.

Мочеиспускание — сложный рефлекторный акт, заключающийся в одновременном сокращении стенки мочевого пузыря и расслаблении его сфинктеров.

Повышение давления в мочевом пузыре приводит к возбуждению механорецепторов этого органа. Афферентные импульсы поступают в спинной мозг к центру мочеиспускания (II—IV сегменты крестцового отдела). От центра по эфферентным парасимпатическим (тазовым) нервам импульсы идут к мышце мочевого пузыря и его сфинктеру. Происходит рефлекторное сокращение мышечной стенки и расслабление сфинктера. Одновременно от центра мочеиспускания возбуждение передается в кору большого мозга, где возникает ощущение позыва к мочеиспусканию. Импульсы от коры большого мозга через спинной мозг поступают к сфинктеру мочеиспускательного канала. Происходит мочеиспускание. Влияние коры большого мозга на рефлекторный акт мочеиспускания проявляется в его задержке, усилении или даже произвольном вызывании. У детей раннего возраста корковый контроль задержки мочеиспускания отсутствует. Он вырабатывается постепенно с возрастом.

Источник: http://medlecture.ru/lectures/phisiologia-semestr-2/pages/phisiologia-vydeleniya

12.3.Функции почек

Функции почек многообразны, при этом часть из них связана с процессами выделения, в которых почки играют ведущую роль, другая же часть может быть названа невыделительными функциями почек. Почки участвуют в регуляции:

1) водного баланса организма (табл. 12.1) и, соответственно, объ­емов вне- и внутриклеточных водных пространств, поскольку ме­няют количество выводимой с мочой воды;

2) ионного баланса и состава жидкостей внутренней среды путем избирательного изменения экскреции ионов с мочой;

постоянства осмотического давления жидкостей внутренней среды, за счет изменения количества выводимых осмотически ак­ тивных веществ (солей, мочевины, глюкозы и др.);

кислотно-основного баланса, путем изменения экскреции во­ дородных ионов, нелетучих кислот и оснований (глава 13).

метаболизма белков, липидов, углеводов, нуклеиновых кислот и других органических соединений, во-первых, за счет изменений экскреции продуктов метаболизма и избытка соединений, поступив­ ших с пищей или образовавшихся в организме, во-вторых, благо­ даря собственной метаболической функции (синтез аммиака и мо­ чевины, новообразование глюкозы, гидролиз белков и липидов, син­ тез ферментов, простаноидов и т.п.);

циркуляторного гомеостазиса, путем регуляции обмена электро­ литов, объема циркулирующей крови, внутренней секреции гормо­ нов, регулирующих функции сердечно-сосудистой системы —ренина, кальцитриола и др. (глава 5), а также экскретируя другие гумораль­ ные регуляторы системы кровообращения;

эритропоэза, за счет внутренней секреции эритропоэтина — гуморального регулятора эритрона (глава 6);

гемостаза, путем образования гуморальных регуляторов сверты­ вания крови и фибринолиза (урокиназы, тромбопластина, тромбок- сана и простациклина) и участвуя в обмене физиологических анти­ коагулянтов (гепарина).

Экскретируя из внутренней среды чужеродные и вредные веще­ства, почки выполняют защитную функцию. Таким образом, выде­ляют следующие функции почек: экскреторную, гомеостатическую, метаболическую, инкреторную и защитную. Основной функцией по­чек, обеспечивающей ведущую роль в выделительной системе орга­низма, является образование и выделение мочи.

Механизмы мочеообразования. Моча образуется в почках из кро­ви, причем почка относится к наиболее интенсивно кровоснабжаемым органам — ежеминутно через почку проходит 1/4 всего объе­ма крови, выбрасываемой сердцем. Основной структурно-функци­ональной единицей почки, обеспечивающей образование мочи, яв­ляется нефрон. В почке человека и многих млекопитающих содер­жится около 1,2 миллионов нефронов. Однако, не все нефроны работают в почке одновременно, существует определенная периодичность функционирования отдельных нефронов, когда часть из них функционирует, а другие нет. Эта периодичность обеспечивает надежность деятельности почки за счет функционального дублиро­вания. В связи с этим важным показателем функциональной актив­ности почки является масса действующих нефронов в конкретный момент времени.

Нефрон состоит из нескольких последовательно соединенных от­делов (рис. 12.1), располагающихся в корковом и мозговом веществе почки.

Рис.12.1. Морфологические особенности интракортикальных (I) и юкстамедуллярных (II) нефронов.

I — междолевая артерия, 2 — междолевая вена,

3 — дугообразная венула, 5 — междольковая артериола, 6 — междольковая венула, 7 — приносящая артериаола, 8 — выносящая артериола, 9 — сосудистый клубочек, 10 — проксимальный извитой каналец,

11 — прямой нисходящий сосуд, 12 — прямой восходящий сосуд, 13 — петля Генле, 14 — дистальный извитой каналец,

15 — собирательная трубочка.

1) Сосудистый клубочек или мальпигиевое тельце, находится в корковом веществе, имеет около 50 капиллярных петель, связанных друг с другом и подвешенных как на брыжейке с помощью мезангия, состоящего из волокнистых структур и мезангиальных клеток. Снаружи клубочки покрыты двухслойной капсулой Боумена- Шумлянского. Висцеральный листок капсулы покрывает капилляры клу-

бочка и состоит из эпителиальных отростчатых клеток — подоцитов. Отростки подоцитов (большие и малые), называемые педикулами, покрывают всю поверхность капилляров, тесно переплетаясь друг с другом и оставляя межпедикулярные пространства не более 30 нм. Пространства заполнены фибриллярными структурами, образующими щелевую диафрагму, формирующую решетку или сито с диаметром пор около 10 нм. Наружный или париетальный листок капсулы состоит из базальной мембраны, покрытой кубическими эпителиаль­ными клетками, переходящими в эпителий канальцев. Между двумя листками капсулы, расположенными наподобие чаши, имеется щель или полость капсулы, переходящая в просвет главного или прокси­мального отдела канальцев.

Главный или проксимальный отдел канальцев, начинающийся от полости капсулы извитой частью, которая затем переходит в прямую часть канальца. Клетки проксимального отдела на апикаль­ ной мембране имеют щеточную каемку из микроворсин, покрытых гликокаликсом. Проксимальный отдел расположен в корковом ве­ществе, где переходит в петлю Генле.

Тонкий нисходящий отдел петли Генле, который покрыт плос­ кими клетками со щелевидными пространствами в цитоплазме ши­ риной до 7 нм, спускающийся в мозговое вещество почки, где поворачивает на 180° и переходит в восходящую часть, являющуюся началом дистального отдела канальцев.

Дистальный отдел канальцев, состоящий из восходящей части петли Генле или прямого отдела и извитой части. Восходящая часть покрыта клетками, напоминающими клетки проксимального отдела, но лишенными щеточной каемки. Извитая часть дистального ка­нальца вновь располагается в коре почки, подходит к клубочку и обязательно соприкасается с его полюсом между приносящей и выносящей артериолами. Здесь эпителий канальца становится ци­ линдрическим, ядра клеток гиперхромными, этот участок выглядит темным, плотным, что и дало ему название macula densa — плотное пятно. Поскольку непрерывная базальная мембрана здесь отсутствует и клетки эпителия канальца имеют тесный контакт с гранулирован­ ными миоэпителиоидными клетками артериолы клубочка, плотное пятно относят к юкстагломеруллярному аппарату почки. Дистальные извитые канальцы через короткий связующий отдел впадают в коре почек в следующий отдел нефрона — собирательные трубки.

Собирательные трубки спускаются из коры почек вглубь моз­ гового вещества, где их эпителий из кубического становится ци­ линдрическим. Темные цилиндрические эпителиальные клетки дис- тальных отделов собирательных трубок богаты карбангидразой и обеспечивают секрецию ионов водорода. В глубине мозгового веще­ ства в области вершин пирамид собирательные трубки сливаются в выводные протоки, открывающиеся в полость лоханки.

По особенностям локализации клубочков в коре почек, строения канальцев и особенностям кровоснабжения различают три типа неф-ронов: суперфициальные, интракортикальные и юкстамедуллярные (рис. 12.1).

Суперфициальные нефроны имеют поверхностно расположенные в коре клубочки, наиболее короткую петлю Генле, их 20-30%. Интра-кортикальные нефроны, клубочки которых расположены в средней части коры почки, наиболее многочисленны (60-70%) и выполняют основную роль в процессах ультрафильтрации мочи. Диаметр их приносящей артериолы больше, чем у выносящей, ветви последней дают густую сеть капилляров в корковом и мозговом веществе. Юкстамедуллярных нефронов значительно меньше (10-15%), клу­бочки их расположены у границы коркового и мозгового вещества почки, выносящие артериолы шире приносящих, петли Генле самые длинные и спускаются почти до вершины сосочка пирамид. Выно­сящие артериолы образуют прямые капиллярные нисходящие и вос­ходящие сосуды, идущие в глубину мозгового вещества параллельно петлям Генле. Юкстамедуллярные нефроны играют ведущую роль в процессах концентрирования и разведения мочи.

Механизм мочеобразования складывается из трех основных про­цессов: 1) клубочковой ультрафильтрации из плазмы крови воды и низкомолекулярных компонентов с образованием первичной мочи; 2) канальцевой реабсорбции (обратного всасывания в кровь) воды и необходимых для организма веществ из первичной мочи; 3) каналь­цевой секреции ионов, органических веществ эндогенной и экзо­генной природы.

Клубочковая ультрафильтрация и ее регуля­ция. Процесс клубочковой ультрафильтрации (далее просто фильт­рация) осуществляется под влиянием физико-химических и биоло­гических факторов через структуры гломерулярного фильтра, нахо­дящегося на пути выхода жидкости из просвета капилляров клубоч­ка в полость капсулы. Гломерулярный фильтр состоит из 3-х слоев: эндотелия капилляров, базальной мембраны и эпителия висцераль­ного листка капсулы или подоцитов. Эндотелий капилляров прони­зан отверстиями диаметром до 100 нм, что позволяет свободно про­ходить через них воде с растворенными в ней веществами, но не форменным элементам крови. На поверхности эндотелия находится особая выстилка — гликокаликс, мешающая доступу форменных элементов и крупных молекул к лежащей под эндотелием базальной мембране. Базалъная мембрана является основной частью фильтра, препятствующей проникновению из плазмы крови крупномолекуляр­ных соединений (белков). При этом не только размер пор мембраны (около 2,9 нм), но и отрицательный заряд препятствуют прохожде­нию молекул с отрицательным зарядом, например альбуминов. Базальная мембрана довольно быстро «изнашивается» и ее элементы непрерывно восстанавливаются с помощью мезангиальных клеток, при этом в течение года происходит полная замена ее основного вещества. Третий слой фильтра образован отростками подоцитов, между кото­рыми остаются щелевые диафрагмы с диаметром пор около 10 нм, поры покрыты гликокаликсом, оставляющим отверстия радиусом около 3 нм. Эта часть фильтра также несет отрицательный заряд.

Поскольку подоциты содержат внутри отростков — педикул акто-миозиновые миофибриллы, они могут сокращаться и расслабляться,

действуя как микронасосы, откачивающие фильтрат в полость кап­сулы. Эта активность подоцитов составляет один из биологических факторов обеспечения процесса фильтрации, к числу которых от­носится также сокращение и расслабление мезангиалъных клеток, изменяющих тем самым площадь поверхности клубочкового фильтра.

Физико-химические факторы обеспечения фильтрации представ­лены отрицательным зарядом структур фильтра и фильтрационным давлением, являющимся основной причиной фильтрационного про­цесса.

Фильтрационное давление — это сила, обеспечивающая движение жидкости с растворенными в ней веществами из плазмы крови капилляров клубочка в просвет капсулы. Эта сила создается гидро­статическим давлением крови в капилляре клубочка. Препятству­ющими фильтрации силами являются онкотическое давление белков плазмы крови (т.к. белки почти не проходят через фильтр) и дав­ление жидкости (первичной мочи) в полости капсулы клубочка. Таким образом, фильтрационное давление (ФД) представляет собой разность между гидростатическим давлением крови в капиллярах (Рг) и суммой онкотического давления плазмы крови (Ро) и давления первичной мочи (Рм) в капсуле: ФД = Рг -(Ро + Рм). Гидроста­тическое давление крови в капиллярах клубочка высокое, примерномм рт.ст., т.е. почти в 2 раза выше, чем в капиллярах других тканей. Это связано, во-первых, с тем, что капилляры клубочка находятся близко к аорте (короткие почечные и внутрипочечные артерии), и, во-вторых, — диаметр приносящих артериол клубочка больше, чем у выносящих. Гидростатическое давление изменяется при сдвигах соотношения диаметров приносящей и выносящей ар­териол, что является ведущим механизмом регуляции процесса фильтрации. Онкотическое давление белков плазмы крови составляет околомм рт.ст., а давление первичной мочи в капсуле — примерномм рт.ст. Таким образом, ФД составляет в среднем: 70 — (30+20) = 20 мм рт.ст.

Основной количественной характеристикой процесса фильтрации является скорость клубочковой фильтрации (СКФ). СКФ — это объем ультрафильтрата или первичной мочи, образующийся в почках за единицу времени. Эта величина зависит от нескольких факторов: 1) от объема крови, точнее плазмы, проходящей через кору почек в единицу времени, т.е. почечного плазмотока, составляющего в среднем у здорового человека массой 70 кг около 600 мл в мин; 2) фильтрационного давления, обеспечивающего сам процесс фильтра­ции; 3) фильтрационной поверхности, которая равна примерно 2-3% от общей поверхности капилляров клубочка (1,6 м) и может меняться при сокращении подоцитов и мезангиальных клеток; 4) массы действующих нефронов, т.е. числа клубочков, осуществля­ющих процесс фильтрации в определенное время.

СКФ поддерживается в физиологических условиях на довольно постоянном уровне (несмотря на изменения системного артериаль­ного давления) за счет механизмов ауторегуляции. К их числу от­носятся: 1) миогенная ауторегуляция тонуса приносящих артериол

по принципу феномена Бейлиса-Остроумова (см.главу 7); 2) изме­нение соотношения тонуса приносящих и выносящих артериол клу­бочка; 3) активация внутрипочечных гуморальных факторов регуля­ции почечного кровообращения (ренин-ангиотензинной системы, кининов, простагландинов); 4) изменения числа функционирующих нефронов. Первые два механизма поддерживают постоянство крово­тока в клубочках и фильтрационное давление; третий — кроме этого, меняет площадь фильтрационной поверхности и функции подоцитов, четвертый — определяет конечный суммарный эффект ауторегуляции СКФ в органе.

СКФ определяют в результате сопоставления концентрации опре­деленного вещества в плазме крови и моче. При этом, используемое вещество должно выделяться вместе с водой только путем фильт­рации и не всасываться в нефроне обратно в кровь. Таким усло­виям больше всего соответствует полисахарид фруктозы инулин. Исходя из концентрации инулина в плазме [Пин], и, определив его концентрацию в определенном объеме (V) конечной мочи [Мин], рассчитывают какой объем первичной мочи соответствует найденной концентрации инулина. Насколько выросла концентрация инулина в конечной моче по сравнению с его концентрацией в плазме, во столько раз больше объем профильтровавшейся плазмы (т.е. пер­вичной мочи) объема конечной мочи. Этот показатель получил на­звание «клиренса» инулина или коэффициента очищения и рассчи­тывается по формуле:

показывающей какой объем плазмы крови в единицу времени вывел найденное количество инулина в мочу или «очистился» от инулина. По мере прохождения мочи по канальцам вода всасывается обратно в кровь и концентрация инулина растет, что и находят в конечной моче.

Поскольку инулин в организме отсутствует, для определения СКФ его необходимо капельно вводить в кровоток, создавая постоянную концентрацию. Это затрудняет исследование, поэтому в клинике обычно используют эндогенное вещество креатинин, концентрация которого в крови довольно стабильна. Клиренс эндогенного креатинина получил название пробы Реберга. Сравнивая клиренс инулина с клиренсом других веществ, определяют процессы, участвующие в выделении этих веществ с мочой. Если клиренс определенного ве­щества равен клиренсу инулина, значит вещество выделяется почка­ми только путем фильтрации в клубочках. Если клиренс вещества больше клиренса инулина, следовательно, вещество выделяется не только за счет фильтрации, но и секрецией эпителием канальцев. Если клиренс вещества меньше, чем у инулина, — вещество после фильтрации реабсорбируется в канальцах.

В норме СКФ составляет у мужчин около 125 мл/мин, а у жен­щин — 11О мл/мин. В сутки образуется около 180 л первичной мочи, а за 25 мин фильтруется примерно 3 л плазмы крови, т.е.

весь циркулирующий ее объем. За сутки этот объем плазмы крови фильтруется, т.е. очищается, примерно 60 раз. Так как объем ко­нечной мочи около 1,5 л в сутки, очевидно, что из объема первич­ной мочи за это время всасывается в канальцах обратно в кровь примерно 178,5 л жидкости.

Поскольку первичная моча (клубочковый ультрафильтрат) образу­ется из плазмы крови, по своему составу она близка плазме, почти полностью лишенной белков. Так, в ультрафильтрате такое же как в плазме крови количество аминокислот, глюкозы, мочевины, креатинина, свободных ионов и низкомолекулярных комплексов. В связи с тем, что белки-анионы не проникают через клубочковый фильтр, для сохранения мембранного равновесия Доннана (равен­ства произведений концентрации противоположно заряженных ионов электролитов, находящихся по обе стороны мембраны) в первичной моче оказывается на 5% больше концентрация анионов хлора и бикарбоната и, пропорционально меньше концентрация катионов натрия и калия. В первичную мочу проходит небольшое количество наиболее мелких молекул белка —менее 3% гемоглобина и 0,01% альбуминов.

Регуляция СКФ осуществляется за счет нервных и гуморальных влияний. Независимо от природы, регулирующие факторы влияют на СКФ за счет изменения: 1) тонуса артериол клубочков и, соот­ветственно, объемного кровотока (плазмотока) через них и величины фильтрационного давления; 2) тонуса мезангиальных клеток и фильтрационной поверхности; 3) активности подоцитов и их «отса­сывающей» функции. Нервные влияния реализуются вазомоторными ветвями почечных нервов, преимущественно симпатической приро­ды, обеспечивающими изменение соотношения тонуса приносящих и выносящих артериол клубочков. Кроме того, симпатические влияния на юкстагломерулярные клетки через бета-адренорецепторы стиму­лируют секрецию ренина и тем самым реализуют ангиотензинный механизм регуляции фильтрации (спазм выносящих и(или) принося­щих артериол). Гуморальные факторы (табл. 12.4) могут как увеличи­вать, так и уменьшать клубочковую фильтрацию через три описан­ных выше механизма, причем эффекты вазопрессина реализуются через V-1-рецепторы (глава 5). Важнейшую роль играет ауторегуляция коркового кровотока в почке.

Канальцевая реабсорбция и ее регуляция. Сравнение состава и количества первичной и конечной мочи пока­зывает, что в канальцах нефрона происходит процесс обратного всасывания воды и веществ, профильтровавшихся в клубочках. Этот процесс называется каналъцевой реабсорбцией и в зависимости от отдела канальцев, где он происходит, различают реабсорбцию про­ксимальную и дистальную. Реабсорбция представляет собой транс­порт веществ из мочи в лимфу и кровь и в зависимости от меха­низма транспорта выделяют пассивную, первично и вторично ак­тивную реабсорбцию.

Проксимальная реабсорбция обеспечивает полное всасывание ряда веществ первичной мочи — глюкозы, белка, аминокислот и вита-

Основные гормональные влияния на процессы мочеобразования

минов. В проксимальных отделах всасывается 2/3 профильтровав­шихся воды и натрия, большие количества калия, двухвалентных катионов, хлора, бикарбоната, фосфата, а также мочевая кислота и мочевина. К концу проксимального отдела в его просвете остается только 1/3 объема ультрафильтрата, и, хотя его состав уже суще­ственно отличается от плазмы крови, осмотическое давление пер­вичной мочи остается таким же, как в плазме.

Всасывание воды происходит пассивно, по градиенту осмотичес­кого давления и зависит от реабсорбции натрия и хлорида. Реабсорбция натрия в проксимальном отделе осуществляется как актив­ным, так и пассивным транспортом. В начальном участке канальцев это активный процесс. Хотя натрий входит в клетки эпителия через апикальную мембрану пассивно через натриевые каналы по кон­центрационному и электрохимическому градиенту, его выведение через базолатеральные мембраны эпителиальных клеток происходит активно с помощью натрий-калиевых насосов, использующих энер­гию АТФ. Сопровождающим всасывающийся натрий анионом явля­ется здесь бикарбонат, а хлориды всасываются плохо. Объем мочи в канальце уменьшается из- за пассивной реабсорбции воды, и кон­центрация хлоридов в его содержимом растет. В конечных участках проксимальных канальцев межклеточные контакты высоко прони­цаемы для хлоридов (концентрация которых повысилась) и они пассивно по градиенту всасываются из мочи. Вместе с ними пас­сивно реабсорбируются натрий и вода. Такой пассивный транспорт одного иона (натрия) вместе с пассивным транспортом другого (хло­рида) носит название котранспорта. Таким образом, в проксималь­ном отделе нефрона существуют два механизма всасывания воды и ионов: 1) активный транспорт натрия с пассивной реабсорбцией

бикарбоната и воды, 2) пассивный транспорт хлоридов с пассивной реабсорбцией натрия и воды. Поскольку натрий и другие электро­литы всегда всасываются в проксимальных канальцах с осмотически эквивалентным количеством воды, моча в проксимальных отделах нефрона остается изоосмотичной плазме крови.

Проксимальная реабсорбция глюкозы и аминокислот осуществля­ется с помощью специальных переносчиков щеточной каемки апи­кальной мембраны эпителиальных клеток. Эти переносчики транс­портируют глюкозу или аминокислоту только если одновременно связывают и переносят натрий. Пассивное перемещение натрия по градиенту внутрь клеток ведет к прохождению через мембрану и переносчика с глюкозой или аминокислотой. Для реализации этого процесса необходима низкая концентрация в клетке натрия, созда­ющая градиент концентрации между внешней и внутриклеточной средой, что обеспечивается энергозависимой работой натрий-кали­евого насоса базальной мембраны. Поскольку перенос глюкозы или аминокислоты связан с натрием, а его транспорт определяется ак­тивным удалением натрия из клетки, такой вид транспорта назы­вают вторично активным или симпортом, т.е. совместным пассив­ным транспортом одного вещества (глюкоза) из-за активного транс­порта другого (натрия) с помощью одного переносчика.

Поскольку для реабсорбции глюкозы необходимо связывание каж­дой ее молекулы с молекулой переносчика, очевидно, что при из­бытке глюкозы может произойти полная загрузка всех молекул пере­носчиков и глюкоза уже не сможет всасываться в кровь. Эта си­туация характеризуется понятием «максимальный канальцевый транс­порт вещества», которое отражает максимальную загрузку канальцевых переносчиков при определенной концентрации вещества в пер­вичной моче и, соответственно, в крови. Постепенно повышая со­держание глюкозы в крови и тем самым в первичной моче, можно легко обнаружить ту величину ее концентрации, при которой глю­коза появляется в конечной моче и когда ее экскреция начинает линейно зависеть от прироста уровня в крови. Эта концентрация глюкозы в крови и, соответственно, ультрафильтрате свидетельствует о том, что все канальцевые переносчики достигли предела функци­ональных возможностей и полностью загружены. В это время реаб­сорбция глюкозы максимальна и составляет от 303 мг/мин у жен­щин и до 375 мг/мин у мужчин. Величине максимального канальцевого транспорта соответствует более старое понятие «почечный порог выведения».

Почечным порогом выведения называют ту концентрацию вещества в крови и в первичной моче, при которой оно уже не может быть полностью реабсорбировано в канальцах и появляется в конечной моче. Такие вещества, для которых может быть найден порог вы­ведения, т.е. реабсорбирующиеся при низких концентрациях в крови полностью, а при повышенных концентрациях — не полностью, носят название пороговых. Типичным примером является глюкоза, которая полностью всасывается из первичной мочи при концентра­циях в плазме крови ниже 10 моль/л, но появляется в конечной

моче, т.е. полностью не реабсорбируется, при содержании ее в плазме крови выше 10 моль/л. Следовательно, для глюкозы порог выведения составляет 10 моль/л.

Вещества, которые вообще не реабсорбируются в канальцах (ину­лин, маннитол) или мало реабсорбируются и выделяются пропорци­онально накоплению в крови (мочевина, сульфаты и др.), называ­ются непороговыми, т.к. для них порога выведения не существует.

Малые количества профильтровавшегося белка практически пол­ностью реабсорбируются в проксимальных канальцах с помощью пиноцитоза. Мелкие белковые молекулы абсорбируются на поверх­ности апикальной мембраны эпителиальных клеток и поглощаются ими с образованием вакуолей, которые передвигаясь сливаются с лизосомами. Протеолитические ферменты лизосом расщепляют по­глощенный белок, после чего низкомолекулярные фрагменты и ами­нокислоты переносятся в кровь через базолатеральную мембрану клеток.

Дистальная реабсорбция ионов и воды по объему значительно меньше проксимальной. Однако, существенно меняясь под влиянием регулирующих воздействий, она определяет состав конечной мочи и способность почки выделять либо концентрированную, либо разве­денную мочу (в зависимости от водного баланса организма). В дистальном отделе нефрона происходит активная реабсорбция на­трия. Хотя здесь всасывается всего 10% от профильтровавшегося количества катиона, этот процесс обеспечивает выраженное умень­шение его концентрации в моче и, напротив, повышение концент­рации в интерстициальной жидкости, что создает значительный гра­диент осмотического давления между мочой и интерстицием. Хлор всасывается преимущественно пассивно вслед за натрием. Способ­ность эпителия дистальных канальцев секретировать в мочу Н-ионы связана с реабсорбцией ионов натрия, этот вид транспорта в виде обмена натрия на протон получил название «антипорт». Активно всасывается в дистальном отделе канальцев калий, кальций и фос­фаты. В собирательных трубочках, главным образом юкстамедул-лярных нефронов, под влиянием вазопрессина повышается прони­цаемость стенки для мочевины и она, благодаря высокой концент­рации в просвете канальца, пассивно диффундирует в окружающее интерстициальное пространство, увеличивая его осмолярность. Под влиянием вазопрессина стенка дистальных извитых канальцев и собирательных трубочек становится проницаемой и для воды, в результате чего происходит ее реабсорбция по осмотическому гра­диенту в гиперосмолярный интерстиций мозгового вещества и далее в кровь.

Способность почки образовывать концентрированную или разве­денную мочу обеспечивается деятельностью противоточно-множительной канальцевой системы почки, которая представлена парал­лельно расположенными коленами петли Генле и собирательными трубочками (рис.12.2). Моча двигается в этих канальцах в противо­положных направлениях (почему систему и назвали противоточной), а процессы транспорта веществ в одном колене системы усилива-

ются («умножаются») за счет деятельности другого колена. Опреде­ляющую роль в работе противоточного механизма играет восходящее колено петли Генле, стенка которого непроницаема для воды, но активно реабсорбирует в окружающее интерстициальное простран­ство ионы натрия. В результате, интерстициальная жидкость стано­вится гиперосмотичной по отношению к содержимому нисходящего колена петли и по направлению к вершине петли осмотическое давление в окружающей ткани растет. Стенка же нисходящего ко­лена проницаема для воды, которая пассивно уходит из просвета в гиперосмотичный интерстиций. Таким образом, в нисходящем коле­не моча из-за всасывания воды становится все более и более ги­перосмотичной, т.е. устанавливается осмотическое равновесие с интерстициальной жидкостью. В восходящем колене, из-за всасывания натрия, моча становится все менее осмотичной и в корковый отдел дистального канальца восходит уже гипотоничная моча. Однако ее количество из-за всасывания воды и солей в петле Генле суще­ственно уменьшилось.

Рис. 12.2. Противоточно- множительная тубулярная система мозгового вещества почки.

Цифрами обозначены величины осмотического давления интерстициальной жидкости и мочи. В собирательной трубочке цифрами в скобках обозначено осмотическое давление мочи в отсутствие вазопрессина (разведение мочи), цифрами без скобок — осмо­тическое давление мочи в условиях действия вазопрессина (кон­центрирование мочи).

Собирательная трубочка, в которую затем поступает моча, тоже образует с восходящим коленом петли Генле противоточную систе­му. Стенка собирательной трубочки становится проницаемой для воды только в присутствии вазопрессина. В этом случае, по мере продвижения мочи по собирательным трубочкам вглубь мозгового вещества, в котором нарастает осмотическое давление из-за всасы­вания натрия в восходящем колене петли Генле, все больше воды пассивно уходит в гиперосмотичный интерстиций и моча становится все более концентрированной.

Под влиянием вазопрессина реализуется еще один важный для концентрирования мочи механизм — пассивный выход мочевины из собирательных трубочек в окружающий интерстиций. Всасывание воды в верхних отделах собирательных трубочек ведет к нарастанию концентрации мочевины в моче, а в самых нижних их отделах, расположенных в глубине мозгового вещества, вазопрессин повыша­ет проницаемость для мочевины и она пассивно диффундирует в интерстиций, резко повышая его осмотическое давление. Таким образом, интерстиций мозгового вещества становится наиболее вы­соко осмотичным в области вершины почечных пирамид, где и происходит увеличение всасывания воды из просвета канальцев в интерстиций и концентрирование мочи.

Мочевина интерстициальной жидкости по концентрационному гра­диенту диффундирует в просвет тонкой восходящей части петли Генле и вновь поступает с током мочи в дистальные канальцы и собирательные трубочки. Так осуществляется кругооборот мочевины в канальцах, сохраняющих высокий уровень ее концентрации в мозговом веществе. Описанные процессы протекают в основном в юкстамедуллярных нефронах, имеющих наиболее длинные петли Генле, спускающиеся глубоко внутрь мозгового вещества почки.

В мозговом веществе почки имеется и другая — сосудистая противоточная система, образованная кровеносными капиллярами. По­скольку кровеносная сеть юкстамедуллярных нефронов образует длинные параллельные прямые нисходящие и восходящие капилляр­ные сосуды (рис. 12.1), спускающиеся вглубь мозгового вещества, двигающаяся по нисходящему прямому капиллярному сосуду кровь постепенно отдает воду в окружающее интерстициальное простран­ство в силу нарастающего осмотического давления в ткани и, на­против, обогащается натрием и мочевиной, сгущается и замедляет свое движение. В восходящем капиллярном сосуде по мере движе­ния крови в ткани с постепенно снижающимся осмотическим дав­лением происходят обратные процессы — натрий и мочевина по концентрационному градиенту диффундируют обратно в ткань, а вода всасывается в кровь. Таким образом, и эта противоточная система способствует поддержанию высокого осмотического давления в глу­боких слоях ткани мозгового вещества, обеспечивая удаление воды и удержание натрия и мочевины в интерстиций.

Деятельность описанных противоточных систем во многом зависит от скорости движения находящихся в них жидкостей (мочи или крови). Чем скорее будет двигаться моча по трубкам противоточной

системы канальцев, тем меньшие количества натрия, мочевины и воды успеют реабсорбироваться в интерстиций и большие количе­ства менее концентрированной мочи будут выделяться почкой. Чем выше будет скорость кровотока по прямым капиллярным сосудам мозгового вещества почки, тем больше натрия и мочевины унесет кровь из почечного интерстиция, т.к. они не успеют диффундиро­вать из крови назад в ткань. Этот эффект называют «вымыванием» осмотически активных веществ из интерстиция, в результате его осмолярность падает, концентрирование мочи уменьшается и почкой выделяется больше мочи низкого удельного веса (разведение мочи). Чем медленнее происходит движение мочи или крови в мозговом веществе почек, тем больше осмотически активных веществ накап­ливается в интерстиции и выше способность почки концентрировать мочу.

Регуляция каналъцевой реабсорбции осуществляется как нервным, так и, в большей мере, гуморальным путем.

Нервные влияния преимущественно реализуются симпатическими проводниками и медиаторами через бета- адренорецепторы мембран клеток проксимальных и дистальных канальцев. Симпатические эф­фекты проявляются в виде активации процессов реабсорбции глюкозы, натрия, воды и фосфатов и реализуются через систему вторичных посредников (аденилатциклаза — цАМФ). В регуляции процессов ме­таболизма почечной ткани существенную роль играют трофические влияния симпатической нервной системы. Нервная регуляция крово­обращения в мозговом веществе почки увеличивает или уменьшает эффективность сосудистой противоточной системы и концентрирова­ние мочи. Сосудистые эффекты нервной регуляции могут опосредо­ваться через внутрипочечные системы гуморальных регуляторов — ренин- ангиотензинную, кининовую, простагландины и др.

Основным фактором регуляции реабсорбции воды в дистальных отделах нефрона является гормон вазопрессин, называвшийся ранее антидиуретическим гормоном. Этот гормон образуется в супраопти-ческом и паравентрикулярных ядрах гипоталамуса и поступает в кровь из нейрогипофиза. Влияние вазопрессина на проницаемость эпителия канальцев обусловлено наличием рецепторов к гормону, относящихся к V-2 типу, на поверхности базолатеральной мембраны клеток эпи­телия. Образование гормон-рецепторного комплекса (глава 3), влечет за собой через посредство GS-белка и гуанилового нуклеотида акти­вацию аденилатциклазы и образование цАМФ у базолатеральной мем­браны (рис. 12.3). После этого цАМФ пересекает клетку эпителия и, достигнув апикальной мембраны, активирует цАМФ- зависимые проте-инкиназы. Под влиянием этих ферментов происходит фосфорилирова-ние мембранных белков, приводящее к повышению проницаемости для воды и увеличению поверхности мембраны. Перестройка ультра­структур клетки ведет к образованию специализированных вакуолей, переносящих большие потоки воды по осмотическому градиенту от апикальной к базолатеральной мембране, не позволяя самой клетке набухать. Такой транспорт воды через клетки эпителия реализуется вазопрессином в собирательных трубочках. Кроме того, в дистальных

Рис. 12.3. Механизм действия вазопрессина на проницаемость собирательных трубочек для воды.

Б-л мембрана — базолатеральная мембрана клеток,

А мембрана — апикальная мембрана,

ГН — гуанидиновый нуклеотид, АЦ — аденилатциклаза.

к анальцах вазопрессин обусловливает активацию и выход из клетокгиалуронидаз, вызывающих расщепление гликозаминогликанов основ­ного межклеточного вещества и межклеточный пассивный транспорт воды по осмотическому градиенту.

Канальцевая реабсорбция воды регулируется и другими гормона­ми. С учетом механизмов действия все гормоны, регулирующие реабсорбцию воды, можно представить в виде шести групп:

повышающие проницаемость мембран дистальных отделов неф- рона для воды (вазопрессин, пролактин, хорионический гонадотро- пин);

меняющие чувствительность клеточных рецепторов к вазопрес- сину (паратирин, кальцитонин, кальцитриол, простагландины, аль- достерон);

меняющие осмотический градиент интерстиция мозгового слоя почки и, соответственно, пассивный осмотический транспорт воды (паратирин, кальцитриол, тиреоидные гормоны, инсулин, вазопрессин);

меняющие активный транспорт натрия и хлорида, а за счет этого и пассивный транспорт воды (альдостерон, вазопрессин, ат- риопептид, прогестерон, глюкагон, кальцитонин, простагландины);

повышающие осмотическое давление канальцевой мочи за счет нереабсорбированных осмотически активных веществ, например глю­ козы (контринсулярные гормоны);

6) меняющие кровоток по прямым сосудам мозгового .вещества и, тем самым, накопление или «вымывание» осмотически активных веществ из интерстиция (ангиотензин- II, кинины, простагландины, паратирин, вазопрессин, атриопептид).

Канальцевая реабсорбция электролитов, также как и воды, регу­лируется преимущественно гормональными, а не нервными влия­ниями.

Реабсорбция натрия в проксимальных канальцах активируется аль-достероном и угнетается паратирином, в толстой части восходящего калена петли Генле реабсорбция натрия активируется вазопресси-ном, глюкагоном, кальцитонином, а угнетается простагландинами Е. В дистальном отделе канальцев основными регуляторами транспорта натрия являются альдостерон (активация), простагландины и атри­опептид (угнетение). Регуляция канальцевого транспорта кальция, фосфата и частично магния обеспечивается, в основном, кальций-регулирующими гормонами. Паратирин имеет в канальцевом аппа­рате почки несколько участков действия. В проксимальных каналь­цах (прямой отдел) всасывание кальция происходит параллельно с транспортом натрия и воды. Угнетение реабсорбции натрия в этом отделе под влиянием паратирина сопровождается параллельным сни­жением реабсорбции кальция. За пределами проксимального каналь­ца паратирин избирательно усиливает реабсорбцию кальция, особен­но в дистальном извитом канальце и корковой части собирательных трубочек. Реабсорбция кальция активируется также кальцитриолом, а подавляется кальцитонином. Всасывание фосфата в канальцах почки угнетается и паратирином (проксимальная реабсорбция), и кальци­тонином (дистальная реабсорбция), а усиливается кальцитриолом и соматотропином. Паратирин активирует реабсорбцию магния в кор­ковой части восходящего колена петли Генле и тормозит прокси­мальную реабсорбцию бикарбоната.

Канальцевая секреция и ее регуляция. Каналь-цевой секрецией называют активный транспорт в мочу веществ, со­держащихся в крови или образуемых в самих клетках канальцевого эпителия, например аммиака. Секреция осуществляется, как прави­ло, против концентрационного или электрохимического градиента с затратами энергии. Путем канальцевой секреции из крови выделя­ются как ионы (К + , Н + ), органические кислоты и основания эндо­генного происхождения, так и поступившие в организм чужеродные вещества, в том числе органического происхождения. Для ряда чу­жеродных организму веществ органической природы (антибиотиков, красителей и рентгеноконтрастных препаратов) скорость и интен­сивность выделения из крови путем канальцевой секреции значи­тельно превышает их выведение путем клубочковой фильтрации. Таким образом, канальцевая секреция является одним из механиз­мов обеспечения гомеостазиса.

Способностью к секреции обладают клетки эпителия и прокси­мального, и дистальных отделов канальцев. При этом, клетки про­ксимальных канальцев секретируют органические соединения с по­мощью специальных переносчиков: один из которых обеспечивает

секрецию органических кислот (парааминогиппуровой кислоты, ди-одраста, фенолрота, пенициллина и др.), а другой — секрецию ор­ганических оснований (гуанидина, пиперидина, тиамина, холина, се-ротонина, хинина, морфина и т.п.). Секреция водородных ионов происходит в проксимальных канальцах в большей мере, чем в дистальных. Однако, дистальная секреция водородных ионов играет основную роль в регуляции кислотно-основного состояния внутрен­ней среды (см. главу 13).

Секреция калия происходит в дистальных канальцах и собира­тельных трубочках, регуляция осуществляется альдостероном, усили­вающим секрецию К + и подавляющим его реабсорбцию. Секреция аммиака, образующегося в самих клетках эпителия, происходит и в проксимальном, и в дистальном отделах.

Регуляция канальцевой секреции осуществляется с помощью гор­монов и симпатической нервной системы. Эффекты нервной регу­ляции осуществляются за счет изменений кровотока в постгломеру-лярных капиллярах почки, т.е. транспорта веществ с кровью секре-тирующим клеткам, и влияния на энергетический обмен в клетках эпителия канальцев. К числу гормонов, усиливающих проксималь­ную канальцевую секрецию органических веществ за счет метаболи­ческих эффектов, относятся соматотропин аденогипофиза, иодсодер-жащие гормоны щитовидной железы и андрогены.

Процесс секреции некоторых веществ в проксимальных канальцах идет настолько интенсивно, что за одно прохождение крови через корковое вещество почек из нее удаляются полностью путем секреции такие вещества как, например, парааминогиппуровая кислота или рентгеноконтрастные препараты. Следовательно, определяя клиренс этих веществ можно рассчитать объем плазмы крови, проходящей в единицу времени через кору почек, или величину эффективного (т.е. участвующего в мочеобразовании) почечного плазмотока.

Состав и свойства конечной мочи. В сутки у че­ловека образуется и выделяется от 0,7 до 2 л мочи. Эта величина носит название суточного диуреза и зависит от количества выпитой жидкости, т.к. здоровым человеком выделяется 65-80% ее объема с мочой. Основное количество мочи образуется днем, тогда как ночью оно составляет не более половины дневного объема. Удельный вес мочи колеблется в широком диапазоне — от 1005 до 1025, обратно пропорционально объему принятой жидкости и образовавшейся мочи. Реакция суточной мочи обычно слегка кислая, однако рН колеблется в зависимости от характера питания. При растительной пище моча приобретает щелочную реакцию, а при белковой — становится более кислой. Моча обычно прозрачна, но имеет небольшой осадок, полу­чаемый при центрифугировании и состоящий из малого количества эритроцитов, лейкоцитов и эпителиальных клеток. В осадке мочи, собранной за 12 ночных часов, содержится от 0 доэритро­цитов, отдо 1,8 миллионов лейкоцитов. Здесь также могут присутствовать кристаллы мочевой кислоты, уратов и оксалата кальция (в кислой моче) или кристаллы мочекислого аммония, фосфорнокис­лого и углекислого кальция (в щелочной моче). Белок и глюкоза в

конечной моче практически отсутствуют, содержание аминокислот не превышает 0,5 г за сутки. Поскольку в канальцах нефрона происходит обратное всасывание основной части профильтровавшейся воды, солей и других веществ, то выделяется их с мочой от 45% (мочевина) до 0,04% (бикарбонат) от профильтровавшегося количества. Однако, за счет всасывания воды и процессов концентрирования мочи, а также секреции в канальцах, содержание в конечной моче ряда веществ превышает их концентрацию в плазме крови: мочевины в 67 раз, калия в 7, сульфатов в 90, фосфатов в 16 раз. В небольших коли­чествах в мочу поступают производные продуктов гниения белков в кишечнике — индола, скатола, фенола. В моче содержится широкий спектр органических кислот, небольшие концентрации витаминов (кро­ме жирорастворимых), биогенные амины и их метаболиты, стероидные гормоны и их метаболиты, ферменты и пигменты, определяющие цвет мочи. С мочой в разных концентрациях, зависящих от ее количества, выделяются практически все неорганические катионы и анионы, в том числе и широкий спектр микроэлементов.

Механизмы выведения мочи и мочеиспускания. Образовавшаяся в структурах нефрона моча поступает в почечные лоханки. По мере их заполнения и растяжения достигается порог раздражения механорецепторов, приводящий к рефлекторному сокра­щению мускулатуры лоханки и раскрытию мочеточника. За счет пе­ристальтических сокращений их гладкой мускулатуры моча поступает в мочевой пузырь. Гладкие мышцы лоханки и мочеточников обладают значительной степенью автоматии, в связи с чем их перистальтика вызывается растяжением объемом поступающей мочи.

Заполняющая мочевой пузырь моча по мере накопления начинает растягивать его стенки, но при этом напряжение стенок пузыря не повышается до определенной величины растяжения, обычно соответ­ствующей объему мочи в пузыре около 400 мл. Появление напряже­ния стенки мочевого пузыря вызывает, позывы к мочеиспусканию, так как раздражение механорецепторов ведет к поступлению афферентной информации в крестцовые отделы спинного мозга и формированию сложного рефлекторного акта. В этом акте участвуют не только спи-нальные, но и расположенные в головном мозге центральные струк­туры, позволяющие осуществлять произвольную задержку мочеиспус­кания или его начало, а также обеспечивающие сенсорно-эмоци­ональную реакцию. Акт мочеиспускания реализуется благодаря тому, что эфферентные импульсы из спинального центра по парасимпати­ческим нервным волокнам достигают мочевого пузыря и мочеиспус­кательного канала, одновременно обеспечивая сокращение гладкой мышцы стенки мочевого пузыря и расслабление двух сфинктеров — шейки мочевого пузыря и мочеиспускательного канала.

Экскреторная функция почек. Принципы искусственного внепочечного очищения крови. Экскреторная функция почек состо­ит в выделении из внутренней среды организма с помощью про­цессов мочеобразования конечных и промежуточных продуктов об­мена (метаболитов), экзогенных веществ, а также избытка воды и

физиологически ценных минеральных и органических соединений. Особое значение имеет при этом выделение продуктов азотистого метаболизма (мочевина, мочевая кислота, креатинин и др.), Н-ионов, индолов, фенолов, гуанидинов, аминов и ацетоновых тел.. Это важно не только потому, что их экскреция осуществляется пре­имущественно почками, но и ввиду того, что накопление этих ве­ществ в крови при нарушении экскреторной функции почек ведет к развитию токсического состояния, называемого уремией. Уремия (мочекровие) — патологическое состояние, обусловленное задержкой в крови продуктов азотистого обмена, ацидозом, нарушениями вод­но-электролитного и осмотического гомеостазиса из-за недостаточ­ности почечных функций. Уремия проявляется снижением возбуди­мости нервной системы вплоть до потери сознания (кома), рас­стройствами внешнего и тканевого дыхания, кровообращения, сни­жением температуры тела; может вести к летальному исходу. Мно­гие проявления уремии можно получить в эксперименте, удалив у животных обе почки. Компенсаторное усиление функции других органов выделения не в состоянии при этом предотвратить развитие уремии. При удалении же одной почки, уремическое состояние не формируется, т.к. нефроны оставшейся почки не только усиливают свою функцию, но начинает увеличиваться масса и число функци­онирующих нефронов. Это ведет к значительному повышению клубочковой фильтрации, активации канальцевой реабсорбции и секре­ции, компенсирующих функции отсутствующей почки.

При почечной недостаточности и формировании состояния уремии возникает необходимость искусственного дополнительного внепочеч-ного очищения крови от накапливающихся в крови метаболитов. По аналогии с происходящим в клубочках переносе веществ через полу­непроницаемую мембрану (диализ) методы искусственного очищения получили название внепочечного гемодиализа. Существует два методи­ческих подхода для гемодиализа: экстракорпоральный («искусственная почка») и интракорпоральный или перитонеальный гемодиализ.

Все многочисленные варианты аппарата «искусственная почка» со­стоят из полунепроницаемой мембраны (обычно гидратцеллюлозной), с одной стороны которой течет кровь, а с другой стороны — диали-зирующий (солевой) раствор, обычно содержащий меньшие, чем в крови концентрации натрия. В зависимости от содержания в крови ионов Са, Mg, К и кислотно-щелочного состояния в диализирующий раствор вводят больше или меньше солей этих ионов, а также бикар­бонат для коррекции ацидоза. Повышая давление крови над мембра­ной или объемную скорость кровотока, либо снижая давление диали-зирующей жидкости под мембраной, увеличивают скорость ультра­фильтрации через мембрану, т.е. скорость искусственного гемодиализа.

Перитонеальный гемодиализ основан на том, что брюшина явля­ется естественной полунепроницаемой мембраной и при промыва­нии брюшинной полости солевыми растворами происходит процесс диализа. Перенос веществ через брюшину происходит медленнее, чем при экстракорпоральном гемодиализе, но спектр удаляемых из внутренней среды метаболитов шире.

При резких нарушениях функций обеих или единственной почки искусственный гемодиализ является лишь этапом подготовки к транс­плантации почки. Пересаженная почка, при отсутствии явлений им­мунологической несовместимости и отторжения, эффективно функци­онирует многие годы. Способность пересаженной почки концентриро­вать и разводить мочу, менять экскрецию ионов в зависимости от состояния водно-солевого баланса в организме, свидетельствует о ведущей роли гуморальных механизмов в регуляции функций почек.

Метаболическая функция почек. Метаболическая функция почек состоит в обеспечении гомеостазиса обменных процессов в организ­ме, поддержании во внутренней среде определенного уровня и со­става компонентов метаболизма. При этом участие почки в процес­сах обмена веществ в организме обеспечивается не только экскре­цией субстратов и метаболитов, но и протекающими в ней биохи­мическими процессами. Почка метаболизирует фильтрующиеся с мочой пептиды малой молекулярной массы и денатурированные белки, возвращая в кровь аминокислоты и поддерживая в крови уровень этих пептидов, в том числе и гормонов. Ткань почки об­ладает способностью к новообразованию глюкозы — глюконеогенезу, причем в расчете на единицу массы органа эта способность у почки выше, чем в печени. При длительном голодании примерно по­ловина поступающей в кровь глюкозы образуется почками. Почка является основным органом окислительного катаболизма инозитола, здесь синтезируются важный компонент клеточных мембран фосфатидилинозитол, глюкуроновая кислота, триацил-глицерины и фосфолипиды, поступающие в кровоток, а также простагландины и кинины.

Роль почек в регуляции артериального давления. Почки уча­ствуют в регуляции артериального давления благодаря нескольким механизмам.

В почках образуется ренин, являющийся (глава 5) частью ре­ нин-ангиотензин-альдостероновой системы (РААС), которая обес­ печивает регуляцию тонуса кровеносных сосудов, поддержание ба­ ланса натрия в организме и объема циркулирующей крови, актива­ цию адренергических механизмов регуляции насосной функции серд­ ца и сосудистого тонуса. Уменьшение уровня давления крови в приносящей артериоле клубочка, повышение симпатического тонуса и концентрации натрия в моче дистального канальца активирует секрецию ренина, что с помощью ангиотензина-II и альдостерона способствует нормализации сниженной величины артериального дав­ ления. Неадекватно избыточная секреция ренина и активация РААС может быть причиной повышенного артериального давления.

Почка экскретирует большинство гормональных и физиологи­ чески активных веществ, обладающих выраженными сердечно-сосу­ дистыми эффектами. За счет изменений экскреции поддерживается оптимальный уровень в крови гуморальных регуляторов артериаль­ ного давления.

В почке образуются вещества депрессорного действия, т.е. сни­ жающие тонус сосудов и артериальное давление — нейтральный депрессорный липид мозгового вещества, простагландины, кинины и др. Их образование получило название » антигипертензивной» функ­ ции почек, поскольку ее нарушение может приводить к артериаль­ ной гипертензии.

Почка экскретирует воду и электролиты, а их содержание в крови, вне- и внутриклеточной среде является важным для поддер­ жания уровня артериального давления. Степень задержки натрия и воды во внутренней среде меняет объем циркулирующей крови. Однако, большую роль играет содержание натрия, калия и кальция во вне- и внутриклеточной среде, поскольку оно определяет сокра­ тимость миокарда и сосудистый тонус, а также реактивность сердца и сосудов к регуляторным нейро-гуморальным влияниям.

Одним из факторов участия почек в регуляции артериального давления является механизм «давление-диурез». Повышение артериаль­ ного давления ведет к увеличению диуреза, за счет потери кровью большого объема жидкости уменьшается объем циркулирующей крови и нормализуется артериальное давление. Напротив, падение давления крови вызывает снижение мочеобразования, задержку воды, повыше­ ние объема крови и восстановление уровня давления. Сдвиги фильт­ рационного давления и СКФ при этом не играют значимой роли из- за мощной ауторегуляции клубочкового кровотока, поддерживающей его неизменным при широком диапазоне колебаний уровня артери­ ального давления. Однако, при повышенном артериальном давлении ускоряется кровоток по прямым сосудам мозгового вещества почки и происходит «вымывание» осмотического градиента натрия и мочевины, что снижает реабсорбцию воды и приводит к ослаблению способности почки концентрировать мочу. Ее выделяется значительно больше и объем циркулирующей крови уменьшается. При снижении артериаль­ ного давления кровоток в мозговом веществе замедляется, осмотичес­ кий градиент интерстиция растет, повышается обратное всасывание воды и пополнение объема циркулирующей крови, в результате чего восстанавливается и артериальное давление. Еще большее значение имеет повышение реабсорбции натрия при снижении артериального давления или натриурез при повышенном давлении крови, что задер­ живает или выводит натрий из внеклеточной и внутриклеточной среды и тем самым меняет возбудимость и сократимость миокарда, сосудис­ тый тонус, адренореактивность сердца и сосудов.

Для продолжения скачивания необходимо собрать картинку:

Источник: http://studfiles.net/preview//page:3/

×